

About time:

Do transformers learn temporal verbal aspect?

Eleni Metheniti, Tim Van de Cruys, Nabil Hathout

in Cognitive Modeling and Computational Linguistics (CMCL)
May 2022

Laboratoire Cognition, Langues, Langage, Ergonomie (CLLE) - UT2J, CNRS Institut de Recherche en Informatique de Toulouse (IRIT) -UT3 Leuven.Al institute

Lexical aspect and time

What is lexical aspect?

Temporal features of a verb's described action, event or state:

- frequence
- · duration: stative, punctual, durative
- telicity: telic, atelic

Careful! Lexical aspect ≠ Grammatical aspect ≠ Mood ≠ Tense

Telicity & Duration

Telicity: is there an end point to an action?

- Telic: "I ate a fish." "The soup cooled in an hour."
- · Atelic: "John watched TV." "Nobody laughs at my jokes."

Duration: is this an action or a state?

- Stative: "I disagree with you." "Bread is made of flour."
- · Punctual: "I knocked on the door."
- Durative: "I knocked on the door." "I walked." "I slept all morning."

Lexical aspect and language acquisition

- · Aspect hypothesis (Shirai, 1991; Shirai and Andersen, 1995):
 - Telicity associated with past and perfectivity
 - · Activity -> Accomplishment -> Achievement, not state
- · Conflict verb-context: delayed processing (Todorova et al., 2000)
- DO not strong influence, Prepositions important for telicity
- Stativity is difficult! (Rocca, 2002)
- Perfectivity before duration (Wen, 1997)

But will transformers be

successful?

Our research questions

- · Can transformers understand telicity and duration?
- Does providing the verb position help with predictions?
- · Which architectures are most successful?
- · When is classification possible or unsuccessful?
- · Differences between English and French models?

Experiment: Finetuning &

Classifying for telicity/duration

Pretrained transformer models

EN: BERT, RoBERTa, XLNet, Albert FR: CamemBERT, FlauBERT

Logistic Regression

CNN model

Pretrained transformer models

EN: BERT, RoBERTa, XLNet, Albert FR: CamemBERT, FlauBERT

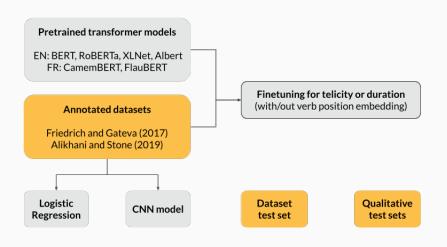
Annotated datasets

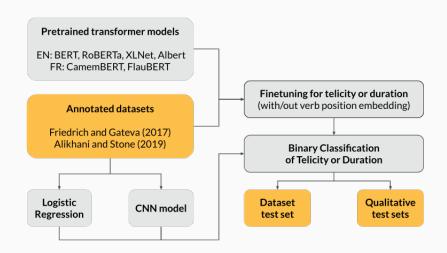
Friedrich and Gateva (2017) Alikhani and Stone (2019)

Logistic Regression

CNN model

Dataset test set Qualitative test sets





Verb position information

Model input:

- · input_ids
- · attention_mask
- · token_type_ids

Tokens	Не	worked	well	and	earned	much			
token_type_ids	[0	1	0	0	0	0	0]		
Tokens (subwords)	Не	work	###ed	well	and	earn	###ed	much	
token_type_ids	[0	1	1	0	0	0	0	0	0]

Datasets (English)

Training and quantitative analysis:

Туре	Label	Friedrich and Gateva	Alikhani and Stone	Ours	Total
telicity	telic	1,831	785	2,885	6.173
telicity	atelic	2,661	1,256	3,288	0,173
	stative	1,860	419	2,036	
duration	durative	38	1,843	2,045	4,081
	punctual	-	355	-	

Qualitative analysis:

- · 40 sentences for telicity, 40 for duration
- 40 sentences of "minimal pairs" of telicity
- \cdot 80 sentences with variations of word order and tense, for telicity

Datasets (French)

Training/validation/test sets:

 Machine translated from English, partially evaluated for translation and annotation accuracy by us

Qualitative analysis:

- · 40 sentences for telicity, 40 for duration
- 40 sentences of "minimal pairs" of telicity
- · 40 sentences with variations of word order and tense, for telicity

Results (EN)

Quantitative results: Telicity (EN)

- All models achieved accuracy of >0.80
- BERT models outperformed the rest: 0.88 (bert-large-cased)
- RoBERTa models quite successful, XLNet and ALBERT models less successful
- Verb positions: very small improvement (+1-5%)
- Similar accuracy for sentences with seen/unseen verbs in training (±1-4%)

Model	Verb?	Acc.
Model		
bert-base-uncased	yes	0.86
	no	0.81
bert-base-cased	yes	0.87
	no	0.81
bert-large-uncased	yes	0.86
ber t-targe-uncased	no	0.81
bert-large-cased	yes	0.88
beit targe cased	no	0.81
roberta-base	no	0.84
roberta-large	no	0.80
xlnet-base-cased	yes	0.82
Xthet-base-caseu	no	0.81
xlnet-large-cased	yes	0.82
xtmet-targe-caseu	no	0.8
albert-base-v2	yes	0.84
atbert-base-v2	no	0.81
albert-large-v2	yes	0.80
atbert-targe-v2	no	0.82
CNN (50 epochs)	no	0.75
Logistic Regression	no	0.61

Quantitative results: Duration (EN)

- Very high accuracy, models achieved accuracy of >0.93
- BERT models slightly outperformed the rest (in general)
- · All models were very successful
- Verb position information: no improvement (±1-2%)
- Similar accuracy for sentences with seen/unseen verbs in training (±1-3%)

Model	Verb?	Acc.
bert-base-uncased	yes	0.96
Del t-base-uncaseu	no	0.94
bert-base-cased	yes	0.96
Delt-Dase-Caseu	no	0.96
bert-large-uncased	yes	0.96
bert-targe-uncased	no	0.95
bert-large-cased	yes	0.96
Dert-targe-caseu	no	0.95
roberta-base	no	0.95
roberta-large	no	0.95
xlnet-base-cased	yes	0.94
Xthet-base-caseu	no	0.95
xlnet-large-cased	yes	0.94
Xthet-targe-caseu	no	0.95
albert-base-v2	yes	0.95
atbert base v2	no	0.95
albert-large-v2	yes	0.96
J	no	0.96
CNN (50 epochs)	no	0.88
Logistic Regression	no	0.70

Qualitative results: Telicity (EN)

Correct in most cases and models, but problems when there is conflict between verb and context

- ✓ Cork floats on water.
- ✓ The Earth revolves around the Sun.
- ✓ I spilled the milk.
- ✓ I always spill milk when I pour it in my mug.
- X I eat a fish for lunch on Fridays.
- X The inspectors are always checking every document very carefully.

Qualitative results: Telicity (EN)

Minimal pairs:

- ✓ I drank the whole bottle.
- ✓ I drank juice.
- X The cat drank all the milk.
- X The boy is eating an apple.
- √ The boy is eating apples.

Qualitative results: Telicity (EN)

Word order and tenses:

- X I ate a fish for lunch at noon. At noon I ate a fish for lunch.
- ✓ I had eaten a fish for lunch at noon. At noon I had eaten a fish for lunch.
- X The Prime Minister made that declaration for months.
- \checkmark For months the Prime Minister has been making that declaration.

Qualitative results: Duration (EN)

Stative sentences were more difficult than durative sentences for the models:

- X Bread consists of flour, water and yeast.
- √ I disagree with you.

Durative sentences always correctly classified:

- ✓ She plays tennis every Friday.
- √ She is playing tennis right now.

Results (FR)

Quantitative results (FR)

- Telicity:
 - Best: 0.77 (camembert-base & flaubert-base-cased, without verb)
 - · Worst: 0.69 (flaubert-small-cased, with verb)
 - Baselines: 0.71 (CNN), 0.61 (Log. regression)
- · Duration:
 - · Best: 0.87 (camembert-large & flaubert-large-cased, without verb)
 - Worst: 0.79 (flaubert-small-cased, with verb)
 - · Baselines: 0.80 (CNN), 0.68 (Log. regression)
- Verb position deteriorated the results marginally

Qualitative results (FR)

Better performance at qualitative sets than English!

Telicity:

- ✓ Je mange un poisson à midi les vendredis.
- X Le garçon mange une pomme.
- √ Le garçon mange des pommes.
- X J'ai bu du jus de fruit.
- ✓ J'ai bu toute la bouteille.

Duration:

- X J'aime le chocolat.
- X Le pain est composé de farine, d'eau et de levure.

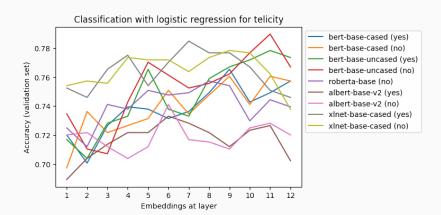
Pretrained vector classification

Additional experiment: Pretrained models and verb vectors

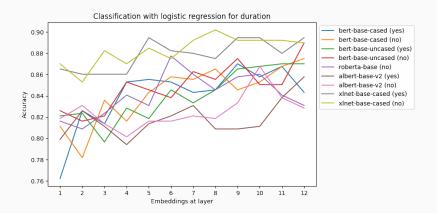
(for English)

- Find verb position in sentence
- · Extract its contextual word embeddings, per layer
- Train logistic regression model with verb embeddings
- Predict label on test set

Pretrained models and verb vectors



Pretrained models and verb vectors



Discussion

Discussion

- Contextual embeddings are good at telicity and duration classification, even without finetuning!
- Why did BERT models outperform? Better attention, better semantic representations
- Qualitative analysis:
 - · Verb features > context > infelicitous context
 - · Word order, tense were influential (to some degree)
 - French morphosyntax might have been "easier" for the models than English

Thank you for your attention!

Selected References

- Alikhani, M. and Stone, M. (2019). "Caption" as a Coherence Relation: Evidence and Implications. In Proceedings of the Second Workshop on Shortcomings in Vision and Language, pages 58–67.
- Friedrich, A. and Gateva, D. (2017). Classification of telicity using cross-linguistic annotation projection. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 2559–2565.
- Rocca, S. (2002). Lexical aspect in child second language acquisition of temporal morphology. The L2 acquisition of tense-aspect morphology.
- Shirai, Y. (1991). Primacy of aspect in language acquisition: Simplified input and prototype.
- Shirai, Y. and Andersen, R. W. (1995). The acquisition of tense-aspect morphology: A prototype account. *Language*, 71(4):743–762.
- Todorova, M., Straub, K., Badecker, W., and Frank, R. (2000). Aspectual coercion and the online computation of sentential aspect. In *Proceedings of the Annual Meeting of the Cognitive Science Society*, volume 22.
- Wen, X. (1997). Acquisition of chinese aspect: An analysis of the interlanguage of learners of chinese as a foreign language. ITL-International Journal of Applied Linguistics, 117(1):1–26.